Programmed cell death of retinal cone bipolar cells is independent of afferent or target control
نویسندگان
چکیده
منابع مشابه
Hormonal control of programmed cell death/apoptosis.
Apoptosis or programmed cell death is a physiological form of cell death that occurs in embryonic development and during involution of organs. It is characterized by distinct biochemical and morphological changes such as DNA fragmentation, plasma membrane blebbing and cell volume shrinkage. Many hormones, cytokines and growth factors are known to act as general and/or tissue-specific survival f...
متن کاملProgrammed cell death during retinal development of the mouse eye.
Similar to other parts of the central nervous system, there are two types of programmed cell death during retinal development. In early development, the neuronal progenitor population is affected. In the mouse eye, this kind of programmed cell death begins at around embryonic day (E) 12.5 and peaks between E14.5 and E16.5. The second phase of programmed cell death occurs during synaptogenesis w...
متن کاملThe Role of Caspase 9 during Programmed Cell Death in Ciliary Ganglia of Chick Embryos
During programmed cell death (PCD) apoptosis is controlled by many factors such as proteases. With no specific protease (s) known during PCD in the developing nervous system so far, we sought to determine if any specific protease (s) is involved in this process and therefore used different protease inhibitors during PCD (from embryonic day 6 to 10) in chick embryos. Among the inhibitors commerc...
متن کاملImpact of Duration and Severity of Persistent Pain on Programmed Cell Death
Programmed cell death is a highly regulated form of cell death, mostly distinguished by the activation of a family of cystein-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Several recent studies have addressed the role of programmed cell death in inflammatory and chronic pain states. Casp...
متن کاملVoltage-dependent Na(+) currents in mammalian retinal cone bipolar cells.
Voltage-dependent Na(+) channels are usually expressed in neurons that use spikes as a means of signal coding. Retinal bipolar cells are commonly thought to be nonspiking neurons, a category of neurons in the CNS that uses graded potential for signal transmission. Here we report for the first time voltage-dependent Na(+) currents in acutely isolated mammalian retinal bipolar cells with whole ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Developmental Biology
سال: 2014
ISSN: 0012-1606
DOI: 10.1016/j.ydbio.2014.08.018